ModuLED Giga Modular Passive Star LED Cooler ø152mm

Features & Benefits

- For low and high bay designs from 4,300 to 13,500 lumen
- Thermal resistance range Rth 0.7 - 1.13°C/W
- Modular design with mounting holes foreseen for a wide range of LED modules and COB's:
 - All Zhaga Book 3 LED engines and holders
 - Bridgelux Gen7 Vero & Décor Vero 18, Vero SE & Décor Vero SE 10/13/29, Gen7 V 18/22, Vesta Tunable White 9/13mm & Dim-To-Warm 15mm
 - Citizen Citled CLU038/03J, CLU048/04J, CLU058, CLU712
 - Cree Xlamp CXA/CXB18, CXA/CXB25, CMT14/19/28, CMA18/25/30
 - Edison EdiPower III HM24/30/40
 - GE Infusion M, DLM, NPM series LED module
 - LG Innnotek LEMWM18 17W, 24W, LEMWM28 40W
 - Lumileds Gen4 Luxeon 1204, 1205, 1208, 1211, 1216, 1812
 - Luminus CVM-14, CVM-18, CLM-22, CKM-22, CHM-22
 - Nichia NFCWD968, NFCWJ108-120, NFDWJ130B, NVEWL016Z
 - Osram Soleriq S19
 - Philips Fortimo DLM Gen5
 - Prolight Opto PACF, PACG
 - Seoul Semiconductor ZC18, ZC25, ZC40, ZC60, ZC100
 - Sharp Mega Zenigata, Tiger Zenigata
 - Tridonic TALEXX Stark SLE GEN5 15mm, DLE GEN2, GEN3 65mm
 - Xicato Chip on Board LED light source XOB23
- Diameter 152mm - Standard height 20 / 50mm
 Other heights on request
- Extruded from highly conductive aluminum

Order Information

Example : ModuLED Giga 15250-B

<table>
<thead>
<tr>
<th>ModuLED Giga 152</th>
<th>1 - 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (mm)</td>
<td></td>
</tr>
</tbody>
</table>
| Anodising Color | B - Black
| | C - Clear |

ModuLED Giga is designed in this way that you can mount various LED modules on the same LED cooler
Simple mounting with self tapping screws
Recommended screw force 6lb/in
Screws are available from MechaTronix
ModuLED Giga Modular Passive Star LED Cooler ø152mm

Product Details

<table>
<thead>
<tr>
<th>Model n°</th>
<th>ModuLED Giga 1S2.20</th>
<th>ModuLED Giga 1S2.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension (mm)</td>
<td>ø152 x h20</td>
<td>ø152 x h50</td>
</tr>
<tr>
<td>Volume (mm³)</td>
<td>116158</td>
<td>290965</td>
</tr>
<tr>
<td>Cooling Surface (mm²)</td>
<td>83469</td>
<td>190296</td>
</tr>
<tr>
<td>Weight (gr)</td>
<td>314</td>
<td>786</td>
</tr>
<tr>
<td>Thermal Resistance (°C/W)</td>
<td>1.13</td>
<td>0.7</td>
</tr>
<tr>
<td>Power Pd (W)</td>
<td>44</td>
<td>71</td>
</tr>
<tr>
<td>Heat Sink Material</td>
<td>AL6063-T5</td>
<td>AL6063-T5</td>
</tr>
</tbody>
</table>

1. 3D files are available in ParaSolid, STP and IGS on request.
2. The thermal resistance Rth is determined with a calibrated heat source of 30mm x 30mm central placed on the heat sink, Tamb 40° and an open environment. Reference data @ heat sink to ambient temperature rise Ths-amb 50°C.
 The thermal resistance of a LED cooler is not a fix value and will vary with the applied dissipated power Pd.
3. Dissipated power Pd. Reference data @ heat sink to ambient temperature rise Ths-amb 50°C.
 The maximal dissipated power needs to be verified in function of required case temperature TC or junction temperature TJ and related to the estimated ambient temperature where the light fixture will be placed.
 Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module.

To calculate the dissipated power please use the following formula: Pd = Pe x (1-ηL)
Pd - Dissipated power
Pe - Electrical power
ηL = Light efficiency of the LED module

Notes:
- MechaTronix reserves the right to change products or specifications without prior notice.
- Mentioned models are an extraction of full product range.
- For specific mechanical adaptations please contact MechaTronix.