

CoolStar® 86 Designer series Lumileds LED Star Cooler ø86mm

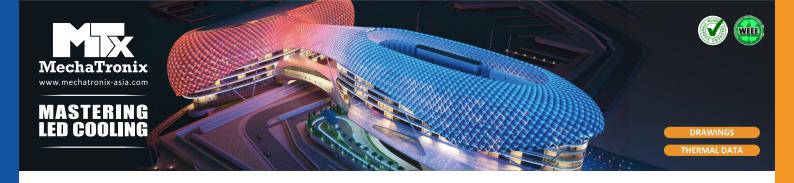
Features & Benefits

- For spot and downlight designs from 2,300 to 6,100 lumen
- Thermal resistance range Rth 1.56 2.08°C/W
- Modular design with mounting holes foreseen for Lumileds Luxeon Gen4 1202s, 1203, 1204, 1205, 1208, 1211, Gen4 Hight Density 1202, 1204, 1205 LED COB by use of LED
- Designer series with high end looks and extra functionality - wire pockets at each side of the LED cooler
- Diameter 86mm Standard height 30mm & 60mm Other heights on request
- · Black anodized or white electro-coating finishing

Order Information

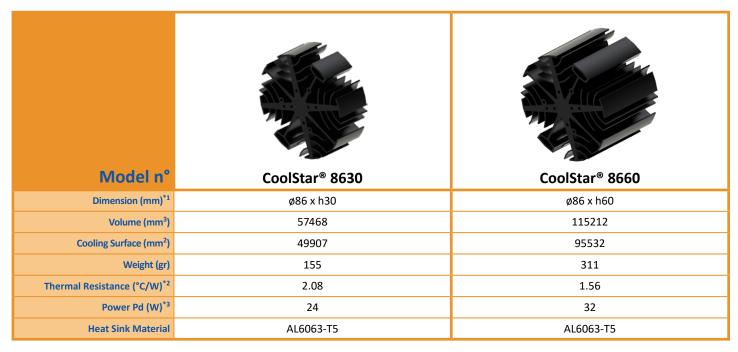
Example: CoolStar® Black 8630

CoolStar® 1 86 2



1 Finishing Color Black - Black anodized White - White electro-coating

2 Height (mm)


Simple mounting with M3 screws Recommened screw force 6lb/in Screws are avaliable from MechaTronix

CoolStar® 86 Designer series LED Star Cooler ø86mm

Product Details

^{*1 3}D files are avaliable in ParaSolid, STP and IGS on request

To calculate the dissipated power please use the following formula: $Pd = Pe \times (1-\eta L)$

Pd - Dissipated power

Pe - Electrical power

ηL = Light effciency of the LED module

Notes:

- MechaTronix reserves the right to change products or specifications without prior notice.
- Mentioned models are an extraction of full product range.
- $\hbox{-} \ \hbox{For specific mechanical adaptations please contact Mecha Tronix.}$

^{*2} The thermal resistance Rth is determined with a calibrated heat source of 15mm x 15mm central placed on the heat sink, Tamb 40° and an open environment. Reference data @ heat sink to ambient temperature rise Ths-amb 50°C

The thermal resistance of a LED cooler is not a fix value and will vary with the applied dissipated power Pd

^{*3} Dissipated power Pd. Reference data @ heat sink to ambient temperature rise Ths-amb 50°C

The maximal dissipated power needs to be verified in function of required case temperature Tc or junction temperature Tj and related to the estimated ambient temperature where the light fixture will be placed

Please be aware the dissipated power Pd is not the same as the electrical power Pe of a LED module